Crosscorrelation Spectra of Dillon and Patterson-Wiedemann type Boolean Functions

نویسندگان

  • Sugata Gangopadhyay
  • Subhamoy Maitra
چکیده

In this paper we study the additive crosscorrelation spectra between two Boolean functions whose supports are union of certain cosets. These functions on even number of input variables have been introduced by Dillon and we refer to them as Dillon type functions. Our general result shows that the crosscorrelation spectra between any two Dillon type functions are at most 5-valued. As a consequence we find that the crosscorrelation spectra between two Dillon type bent functions on n-variables are at most 3-valued with maximum possible absolute value at the nonzero points being ≤ 2 n 2 . Moreover, in the same line, the autocorrelation spectra of Dillon type bent functions at different decimations is studied. Further we demonstrate that these results can be used to show the existence of a class of polynomials for which the absolute value of the Weil sum has a sharper upper bound than the Weil bound. Patterson and Wiedemann extended the idea of Dillon for functions on odd number of variables. We study the crosscorrelation spectra between two such functions and then use the results for calculating the autocorrelation spectra too.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Construction for Balanced Boolean Functions with Very High Nonlinearity

In the past twenty years, there were only a few constructions for Boolean functions with nonlinearity exceeding the quadratic bound 2n−1 − 2(n−1)/2 when n is odd (we shall call them Boolean functions with very high nonlinearity). The first basic construction was by Patterson and Wiedemann in 1983, which produced unbalanced function with very high nonlinearity. But for cryptographic applications...

متن کامل

Idempotents in the neighbourhood of Patterson-Wiedemann functions having Walsh spectra zeros

In this paper we study the neighbourhood of 15-variable Patterson-Wiedemann (PW) functions, i.e., the functions that differ by a small Hamming distance from the PW functions in terms of truth table representation. We exploit the idempotent structure of the PW functions and interpret them as Rotation Symmetric Boolean Functions (RSBFs). We present techniques to modify these RSBFs to introduce ze...

متن کامل

Patterson-Wiedemann construction revisited

In 1983, Patterson and Wiedemann constructed Boolean functions on n = 15 input variables having nonlinearity strictly greater than 2n−1−2 n−1 2 . Construction of Boolean functions on odd number of variables with such high nonlinearity was not known earlier and also till date no other construction method of such functions are known. We note that the PattersonWiedemann construction can be underst...

متن کامل

Balanced Boolean Functions with Nonlinearity > 2 n – 1 – 2

Recently, balanced 15-variable Boolean functions with nonlinearity 16266 were obtained by suitably modifying unbalanced Patterson-Wiedemann (PW) functions, which possess nonlinearity 2–2 + 20 = 16276. In this short paper, we present an idempotent (interpreted as rotation symmetric Boolean function) with nonlinearity 16268 having 15 many zeroes in the Walsh spectrum, within the neighborhood of P...

متن کامل

Asymptotically optimal Boolean functions

The largest Hamming distance between a Boolean function in $n$ variables and the set of all affine Boolean functions in $n$ variables is known as the covering radius $\rho_n$ of the $[2^n,n+1]$ Reed-Muller code. This number determines how well Boolean functions can be approximated by linear Boolean functions. We prove that \[ \lim_{n\to\infty}2^{n/2}-\rho_n/2^{n/2-1}=1, \] which resolves a conj...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2004  شماره 

صفحات  -

تاریخ انتشار 2004